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Trapping Probes

The mixture of charge states in an edge plasma can be measured with a plasma ion

spectrometer.  The instrument utilizes a strong B field (that used to confine the plasma) and a

perpendicular E field within the analyzer to separate ions according to the ratio of charge to

mass.  Typical spectra are obtained by ramping the analyzer electric field to sweep the ion peaks

across an array of three detectors.
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Gridded analyzer

Measures electron and ion energy distribution functions in a plasma where T < 50 eV.  It is

perturbing, because of its size.

Figure showing simple gridded analyzer.

Plasma particles approach a collector after passing through a grid.  The grid is biased to

repel either electrons or ions.  When the collector voltage Vc is varied, only (e.g.) ions with E >

p 6.3



Plasma Physics Collectors AJW August 16, 1997

eVc will be collected.  Then the logarithmic slope of the collection current against voltage for Vc

> 0 gives the ion temperature.  A problem is secondary electron emmission caused by ions or

electrons hitting electrode surfaces.  When collector is repelling all but a few percent of ions,

electron current from secondary electrons is a problem.  This is overcome using a more elaborate

grid system.  First grid repels plasma electrons.  Second grid is an ion repeller whose potential is

varied.  Third grid is the electron suppresser.  Another difficulty is space charge limitation.  Then

potential applied is not that which really exists.  Worst case between electron and ion repellers,

when bulk of ions cab just reach the repeller.  To avoid the problem should set grid separation <

Debye length - not possible at high density.

Figure showing more complex grid configuration.

Emissive probes

Measures plasma or space potential (see later).  This is not the potential at which the

probe would 'float' at, because a conductor in a plasma must charge up negative to repel electrons

and ensure an ambipolar collection of particles.
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A typical probe for use in a plasma.

A really bad figure of how you might measure the 'characteristics'

A simple probe is heated to emit electrons all the time (thermionic).  If the probe potential

is positive wrt the plasma then electrons emitted with low energy cannot escape and are attracted

back.  The probe current is therefore unchanged by electron emmission.  If probe is negative wrt

plasma, electrons can escape so probe current is decreased compared to what it would have been

without electron emmission.  Thus a probe characteristic (I-V curve) with probe hot and cold will

differ if V < Vp (the plasma potential) but not if V> Vp.  Hence we can get at Vp.  There is a

sharp change in the probe current as the probe potential passes through the plasma potential.
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To calculate a probe characteristic

We want to know what the current to a probe inserted into the plasma, or a probe circuit, will be

when we apply a voltage to the probe, either with respect to some defined ground plane such as

the vacuum vessel, or with respect to another probe.  We need to calculate what ions and

electrons will arrive at the probe, considering potential effects.

Orbital theory - a simple picture (energy and momentum conservation) of charged

particles which can hit a given surface.  Tells us that under normal conditions (of ion attraction

and electron repulsion) the electron current is the random drift current at a sheath edge times the

Boltzmann exponential, and the ion current has saturated.

Collisionless sheath - tells us, by solving the energy, continuity and Poisson equations for

the ions, that

a) ions must enter the sheath surrounding the probe at sound speed

b) there must be a pre sheath to accelerate the ions to the sound speed

c)  the total ion current at the sheath edge

We now have an expression for the total (ion plus electron) current at the sheath edge,

which allows us to calculate the characteristic (the I/V curve), and floating potential (probe

potential when no current is drawn).  For the double probe, write everything in terms of the ion

saturation current, as it is better defined.

Orbit theory (Orbital motion)

Consider a cylindrical wire of length l and radius r, l >> r, in a plasma, with a voltage

applied.  What will the current look like?  In saturation conditions, where only one species is

collected, we might expect the Child law to apply.  But the collisionless trajectories prevent this

from happening.
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Consider a wire with negative potential with respect to the region around it.  Then the

wire repels negative ions and electrons, but attracts positive ions.  Then it must be surrounded by

a sheath or region of positive charge.  This sheath is of such a size that the total positive charge

in it equals the negative charge in the wire, so that the field of the wire does not extend beyond

the sheath.  The current cannot then exceed the rate at which ions arrive at the sheath edge.

Suppose the negative potential to be large wrt the voltage equivalent of the ion velocities.  Then

the sheath can be considered in two regions.  In the center is a region where most of the potential

drop occurs, so that in this region only positive ions are found (and maybe a few electrons).

Outside this region both positive and negative particles are found in approximately equal

quantities, but conditions are modified because the ions are drawn to the collector.  In this outer

region the potential approaches the space value asymptotically.  It is convenient to take as the

sheath boundary the surface where the potential begins to drop sharply.  This is O.K. because in
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the outer region the drop is small compared to the total drop.  We regard the distribution of ions

and electrons as known at the sheath boundary.

Note for figure: 'r' should be probe radius and 'a' should be sheath radius.

Assume end effects are negligible.  There will be a circular sheath set up concentric with

the cylinder, with radius a.  Consider ions of one sign only (could be electrons).  Let there be n

per unit volume in a small element dτ bordering on the sheath.  In a plane normal to the axis let u

be the radial component of velocity and v the tangential component of velocity.  u is positive if

towards the wire.  Then the number of ions in dτ with velocity components between u and u+du,

v and v+dv, is

nf u, v( )dudv

The total number of ions per unit length crossing the sheath edge with velocities within the given

range is

2πanuf u,v( )dudv 1)

Let u r, v r be the velocities (radial and tangential components) of the ions arriving at the surface,

and V the applied potential with respect to the sheath edge, positive when the collector attracts

ions.  Then for charge e and mass m, conservation of energy and angular momentum gives

1

2
m ur

2 + v r
2( ) =

1

2
m u2 + v2( ) + eV
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rvr = av

These have a solution, for ur and vr,

ur
2 = u2 −

a2

r2 −1
 
 
 

 
 
 v2 + 2

e

m
V

v r =
a

r
v

The ions which reach the surface of the collector must have

u > 0, ur
2 > 0

(Use squared to avoid imaginary solutions)

Now plot u, v as rectangular coordinates of a point the curve, then the curve ur
2   = 0 is shown for

Figure 1) V > 0 and Figure 2) V < 0.

For V > 0 (ion attraction) the value of v for u = 0 is

v =
2eV /m

a2 / r2 −1( )

The region where u > 0, ur
2 > 0 (i.e. where particles will be collected) is valid is thus between

the solid lines, and to the right of the v axis.  The total no. of particles per unit length reaching

the collector per second is found by integrating equation 1 over the region between the solid

lines.  For a given value of u, v must lie between -v1 and v1, where these are found by solving

the equation for ur
2   = 0

v1
2 =

r2

a2 − r2 u2 + 2
e

m
V

 
 
  

 
 
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v

u

v =
2eV /m

a2 / r2 −1( )
v = u / a2 / r2 −1( )

Figure 1.  Solid lines; the curve of v against u for V positive (collection).  The dashed lines
correspond to the curve v = u / a2 / r2 −1( ) .  r = 1, a = 10, V = 1, m = 1, e = 1

For V < 0 (Figure 2) the region where u > 0, ur
2 > 0 is again within the solid lines.  Note that u

cannot be less than a certain value, found when v = 0:

u1
2 = −2

e

m
V

For any u > u1 the values of v lies between -v1 and v1, as defined previously.

u1 = 2eV / m

v

u

v = u / a2 / r2 −1( )

Figure 2.  Solid lines; the curve of v against u for V negative (repulsion).  The dashed lines
corresponds to the curve v = u / a2 / r2 −1( ) . r = 1, a = 10, V = 1, m = 1, e = 1

Now we can write an expression for the total current Ie of the one species under consideration to

the collector.  It is e times l time expression 1, integrated suitably
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Ie = 2πa lne uf u,v( )dvdu
− v1

v1

∫0, u1

∞

∫

where the lower limit of u is either 0 for V > 0, or u1 for V < 0.  We can replace n by an

equivalent expression involving the total current ie crossing a unit area at the sheath edge (the

drift current of the species e).  This is given by

ie = ne uf u,v( )dvdu
−∞

∞

∫0

∞

∫ 9)

The Distribution Function

For a 1 D Maxwellian we derive:

f u( ) = Ae − 1

2
mu2 / kT( ) 

   
  

A = n
m

2πkT
 
 
  

 
 

1 / 2

For a 3 D Maxwellian we derive

f u, v,w( ) = A3e − 1

2
m u2 +v 2 + w 2( ) / kT( ) 

   
  

A3 = n
m

2πkT
 
 
  

 
 

3 / 2

By analogy, for a 2 D Maxwellian we have

f u, v( ) = A2e
− 1

2
m u2 +v 2( )/ kT( ) 

   
  

A2 = n
m

2πkT
 
 
  

 
 

Note our definition in equation 0 and 1 means that n = 1 (the number density n or N appears in

the definition)

Substitute into 9 gives

ie = ne
m

2πkT
 
 
  

 
 ue

− 1

2
m u2 + v 2( )/ kT( ) 

   
  
dvdu

−∞

∞

∫0

∞

∫

Integrating over v gives
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ie = ne
m

2πkT
 
 
  

 
 

1

2
ue

− 1

2
m u2( ) / kT( ) 

   
  
du

0

∞

∫

(note e− x 2

∫ dx =
π Erf x( )

2
; Erf x = ∞( ) = 1; Erf x = −∞( ) = −1)

Then integrating over u gives

ie = ne
kT

2πm
 
 
  

 
 

1

2

This is the formula of the kinetic theory for the drift current of e.g. the ions.

Now we must evaluate the current to the cylindrical collector Ie.  Make the substitution

η =
eV

kT

and use the variables of integration

x = u
m

2kT
; y = v

m

2kT

Then write the current to the probe Ie in terms of the drift current ie:

Ie = 2πa lne uf u,v( )dvdu = 8 π alie− v1

v 1

∫0 ,u 1

∞

∫ xe
− x 2 + y 2( )

dydx
0

r x 2 + η / a 2 − r2

∫0 , − η

∞

∫
Integrate by parts using Mathematica.  For η > 0 (attraction) we get

Ie = 2πrlie
a

r
Erf

ηr2

a2 − r2

 

 
 

 

 
 + eη 1 − Erf

ηa2

a2 − r2

 

 
 

 

 
 

 

 
  

 

 
  

 

 
 
 

 

 
 
 

This saturates at large η (i.e. large attractive applied voltage) at

Ie = 2πalie

For η < 0 (repulsive) we get

Ie = 2πrliee
η

Drop subscript e (distinguishing the fact that we are only considering one charge species at a

time) mostly from here on.  For retarding potentials (η < 0) the current is independent of the

sheath radius a, and its logarithm is a linear function of the collector voltage.  The slope gives the
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temperature T.  Knowing the size of the probe (i.e. r and l) we then get the density of the plasma

n

η

I /(2πrli)

Figure 3.  The normalized current ( I /(2πrli)) - voltage (η = eV /(kT) ) characteristic for a
cylindrical probe, with r = 1, a = 10, m = 1, e = 1.  The saturation value for large η is 10.

As above, but extended to large η to show saturation.

In the region η > 0, if we assume large a/r, we can approximate the expression for the current by

I = 2πrli
2

π
1 +η

This is shown, together with the exact expression, in Figure 4.
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η

a/r=10
a/r=5

a/r=2

I /(2πrli)
2

π
1 +η

Figure 4.  The normalized current ( I /(2πrli)) - voltage (η = eV /(kT) ) characteristic for a
cylindrical probe, with a/r = 2, 5 and 10, and the approximate expression 

I = 2πrli
2

π
1 +η

i.e. we have

I

2πrli
 
 
  

 
 

2

=
4

π
1+

eV

kT
 
 
  

 
 

Therefore plot the square of the current per unit area against the applied voltage, and obtain a

straight line.  The intercept of this line on the voltage axis line gives

V1 =
−kT

e

i.e. we can deduce the origin of potentials, the space potential.

The slope is

S =
4

π
e

kT
i2 =

2

π2

e

m
ne( )2

i.e. hence n

Now what happens to a cylindrical electrode as we change voltage in a plasma with

electrons and ions present?  Remember that our potential is with respect to the plasma potential,

the potential at the sheath edge.  We have not asked what this is.  There is a floating potential

when the net current, ion pus electron, is zero.  This is the situation before any applied potential

is switched onto the probe.  It is the potential that the probe would sit at with no applied voltage.
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Electron (positive) and Ion (negative) currents collected to a single probe as a function of applied
voltage, for mi/me = 100, all other parameters = 1.

All things being equal except the electron and ion masses, the electron current is much

bigger than the ion current, (m is at least 1840 times smaller).  Therefore this floating potential

must occur when the electrons are well into the retarding regime (η < 0), to get the electron

current down to the ion current value.  In this situation the ions will be well into the attracting

regime (η > 0), i.e. the ion current will be in the saturated state.  Now we apply perturbations

about this.  Negative voltages attract ions, and positive voltages attract electrons.  Making the

voltage more negative than the floating potential keeps the ions in saturation, but the electron

current becomes even smaller.  Making the applied potential positive will start to change the ion

current, but in a negligible amount to the electron current, which changes much faster and is

much bigger.  Therefore we can approximate the situation by assuming that the ion current is

always in saturation (when it is not, as V is increased positive, the error is small), and keeping

the electrons in the retarding situation.  This is so as long as the applied voltage is not much large

than the floating potential.  Then the 'characteristic' becomes

Iprobe = Iion −saturation 1− e e V −V float( )/ kT( )
where

Iion− saturation = 2πr lne
kT

2πm
 
 
  

 
 

1

2

W e derive this more accurately later on.
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Summed electron (positive) and ion (negative) currents as a function of applied voltage.

Langmuir floating probes

Probe models developed by Tonks and Langmuir in the 20's.  Still being used, and still

not understood completely.  Used to measure density, temperature, potential, both equilibrium

and fluctuations. For: easy to use, Against: low temperatures, effects of B fields, non-Maxwellian

distributions,

Figure 2.  A photograph of an FRC Langmuir probe head which is attached to a reciprocating
drive.  The probe head is at the far right hand side.
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Figure 3.  The geometry of the combined multi-pin head used for density, temperature, potential
and velocity measurements.  The lower figure is a detail of one of the twelve outer pins used for
the velocity measurements.

What happens when a conductor is placed in a plasma? Consider a two electrode system.

Potential applied between two electrodes, ions (positive) attracted towards negative electrode,

electrons toward positive electrode.  Charge separation caused by applied electric field opposed

by electric fields created by displaced electrons and ions.  Sheath set up in region of surfaces.
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V applied to a single probe, then current is collected - see figure above and previous

section, the characteristic.  At some V = Vs the probe and plasma potential are equal.  Then no

electric field, and electrons and ions approach probe with random thermal velocities, given by

vth =
8kT

πm

Electrons travel faster than ions.  Outside sheath ne = ni (neutral plasma).  Thus when

probe is at Vs, more electrons hit the probe than ions (per unit time).  Thus current collected is

largely an electron current Ie0.  Increase applied V, making probe more positive wrt plasma.

Then the electrons are accelerated and the small number of ions are repelled.  Since current

collected is due to electrons entering sheath with random thermal motions, and since sheath size

about constant, then current does not change much.  This is called electron saturation.  Now

decrease V below Vs.  Now electrons are repelled and ions accelerated.  At V = Vbc  then

currents are equal: the floating potential.  Further reduce V then electrons repelled and only ions

are collected: ion saturation.

See below for a two electrode system.  If potential is positive the current (ion plus

electron) between probes 1 and 2 is defined to be positive.  Current flowing in circuit is Is, and

plotted against Va in a figure below.
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If potential of probe 2 << that of probe 1, then current collected by probe 2 is about equal

to ion sat current Ii2  Probe 2 repels almost all electrons, so total current in system is dominated

by ion sat current.  As V is deceased, making p2 less negative wrt p1, current collected remains
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about constant until some electrons are collected by p2.   Decease V more then more electrons

collected by p2 and current decreases.  Vbc is point where electron and ion currents are zero and

no net current is drawn.  As p1 is made negative wrt p2 then situation reverses.  If two probes

have equal area then characteristic symmetric about Is = 0, and Ii1 = Ii2.

Potential distribution shown below.

Usually the electrodes are negative wrt the surrounding plasma.  The pot drop Vbc is

normally the result of spatial variations rather than the pot drop across the ohmic resistance of the

plasma.  Therefore Vbc remains independent of the current flowing.  Vbc therefore is independent

of the applied potential Va.

Potential difference between tips is given by

V = V1 − V2 = Vbc − Va ,

i.e.

Va + V1 = Vbc + V2
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and current continuity gives

Is = Ie1 − Ii1 = Ii 2 − Ie 2 , i.e. Ie1 + Ie 2 = Ii2 + Ii1

Now, what to use for the currents?  Remember I = 2πrlieη  for the case of interest, (retarding

potentials) where η = eV / kT( ) , which in our present terminology, with Ve = kTe becomes

Ie = 2πrliee
V / Ve

where we are using ie for the random electron drift current.  Then

Ii1 + Ii 2 = ΣIi =Σ Ie = ie1 2πr1l1e
V1 / Ve + ie2 2πr2l2e

V2 / Ve

Rearrange to give:

ΣIi = Ie 2 1+
ie12πr1l

ie 22πr2l2

e
V1 −V2

Ve

 

  
 

  

Now substitute the voltage relationship:

ΣIi = Ie 2 1+
ie12πr1l

ie 22πr2l2

e
Vbc −Va

Ve

 

  
 

  

Equal areas, lengths, etc.

2Ii = Ie 2 1 + e
Vbc − Va

Ve
 
 

 
 

Then

Is = Ii − Ie 2 = Ii

e Vbc − Va( )/ Ve −1

e Vbc − Va( ) / Ve + 1

 

  
 

  = Ii tanh Vbc − Va( )/(2Ve)[ ]
I

So, measure I-V characteristic of a floating double probe and get Ii and Te.  But what is Ii?

The collisionless sheath.

What is the ion current?  Assume Maxwellian electrons, cold ions, ne = ni at the sheath plasma

interface x = 0.  Define potential φ = 0 at x = 0.  Ion energy (directed) is us.
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Ion energy conservation

1

2
Mu2 x( ) =

1

2
Mus

2 − eφ x( )

Continuity

ni x( )u x( ) = nisus

Solve for u from 1 and substitute into 2

ni = nis 1 −
2eφ
Mus

2

 
 
  

 
 

− 1/ 2

Electrons are Boltzmann

ne x( ) = nese
φ x( ) / kTe

Set nes = nis at the sheath edge, and substitute ne and ni into Poisson's equation

d2φ
dx2 =

e

ε0

ne − ni( )

Then
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d2φ
dx2 =

en s

ε0

eφ / Te − 1−
φ
Es

 
 
  

 
 

− 1/ 2 

 
 

 

 
 

where eEs =
1

2
Mus

2  is initial ion energy

We have a nice nonlinear equation for  you.  It has stable solutions only under certain conditions

(a given us, which means the ions have been accelerated)

Bohm sheath criterion

Integrate by multiplying by dφ/dx and integrate over x

dφ
dx

o

φ

∫
d

dx

dφ
dx

 
 

 
 dx =

ens

ε0

dφ
dx

eφ / Te − 1 −
φ
Es

 
 
  

 
 

− 1/ 2 

 
 

 

 
 

0

φ

∫ dx

cancel dx's and integrate wrt φ:

1

2

dφ
dx

 
 

 
 

2

=
ens

ε0

Tee
φ / Te − Te + 2Es 1−

φ
Es

 
 
  

 
 

1 / 2

− 2Es

 

 
 

 

 
 

0

φ

∫

where we have assumed φ = 0 and dφ/dx = 0 at x = 0 (not strictly true).  Now RHS must be > 0

for a solution to exist (means ne < ni in the sheath).  Expand RHS in Taylor series and find 

( f x + h( ) = f x( ) + hf ' x( ) + h2 / 2 f ' ' x( ) )

1

2

φ2

Te

−
1

4

φ2

Es

> 0

i.e. Es > Te/2 or us > ub = (eTe/M)1/2.  This Bohm criterion says that the ions must enter the

sheath at the speed stated, and this requires some pre sheath to accelerate them.

The pre sheath

The potential drop to accelerate the ion is

1

2
Mub

2 = eφp

i.e.

p 6.24



Plasma Physics Collectors AJW August 16, 1997

φp = Te / 2

The ratio of the density at the sheath ns to that in the bulk plasma where the pre sheath ends nb is

ns = nbe
−φ p Te = 0.61nb

Floating potential

The full current to a conducting surface can now be approximated.  The electron current

is

I− = Ane
kTe

2πme

 

 
 

 

 
 

1

2

eV / Te = Ane
Te

mi

 

 
 

 

 
 

1 / 2
1

2

2mi

πme

 

 
 

 

 
 

1 / 2

eV / Te

Ion current is

I+ = −Ane
kTe

me

 

 
 

 

 
 

1

2

e−1 / 2

where the last factor accounts for the fact that the sheath density is less than the density at

infinity.  Then when total current = 0 we get the floating condition

eVf

Te

=
1

2
ln

2πme

mi

 
 
  

 
 − 1

 

  
 

  

thus measuring the floating potential gives the temperature directly.

The Triple Probe (and variants)

There are two open circuit probes or floating probes (2, 3), whose potential is measured wrt

ground.  There is a strongly negatively biased probe for which no electrons are collected, and

which measures the ion saturation current.  The potential of the return probe (probe 4) is also

measured.
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Probes 1, 4 and 3 constitute the basic triple probe configuration.  A battery is used to bias

probe 1 to 180 V below probe 4.  Probes 4 and 3 are used to calculate Te.  Probe 3 is used to

compute the plasma potential .  The current collected by probe 1 is passed through a 50 Ohm

resistor and returned to the plasma (a double probe).  Measuring the voltage across the resistor

gives the saturation current, from which the density is calculated.  Probe 2 is not a part of the

triple probe set up, but provides with probe 3 information on fluctuations.
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probe 2 and 3: floating so Ie + Ii = 0.  The ion current is the saturation current

probe 1: collects Ii, while Ie = 0.  Ii is the saturation current.

probe 4: must collect 2Ie measured at φfloat so that net current with probe 1 is zero:

potential of probe must adjust to this situation

i.e.

Ie φ float( ) =
1

2
Ie φ return( )

Ane
kTe

2πme

 

 
 

 

 
 

1

2

e
φ float / Te =

1

2
Ane

kTe

2πme

 

 
 

 

 
 

1

2

e
φ freturn / Te

Te = e
φ return − φ float

ln 2( )
 

  
 

  

hence Te.

Ion saturation current (probe 1):

I+ = −Ane
kTe

me

 

 
 

 

 
 

1

2

e−1 / 2 ,

hence, with Te, have ne.

Floating potential (probes 2,3):

eVf

Te

=
1

2
ln

2πme

mi

 
 
  

 
 − 1

 

  
 

  

remember this is wrt φp!!!.  Then φp = Vfloat −
Te

2e
ln

2πme

m i

 
 
  

 
 − 1

 

  
 

  

Effects of B field.

Use modified surface area.
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